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ABSTRACT

The combined mechanical stresses on aircrewmen have

become 1increasingly acute as technological developments

extend the flight envelopes of our high performance
alrcraft. Limitations on the design of this type of
aircraft are frequently dictated by human tolerance. The

concept of an analytical model to evaluate the biomechanical
response of the human intervertebral joiant, wunder the
influence of long term axial compressive 1loading, 1is
important in assessing the 1load carrying capability of
normal and diseased vertebral segments.

It has been experimentally demonstrated that healthy
intervertebral joints are composed of materfials which
exhibit creep characteristics. This investigation is
significant because it presents a study of the time
dependant behavior involved. An axisymmetric finite element
model 1s employed which incorporates a linear viscoelastic
constitutive relation for the intervertebral disc.
Viscoelastic material constants are found by matching

one-dimensional experimental data with the two-~dimensf{onal

model. Results are presented depicting displacement
profiles and stress redistributions cccurring as a
consequence of the inclusion of these viscoelastic

parameters which, for the first time, simulate the actual
human response to high compressive loads over a specific

time span.
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CHAPTER 1

INTRODUCTION

1«1 Background

An understanding of the mechanics of the intervertebral
joint 1s of interest to researchers in many areas; ranging
from problems encountered during pilot ejections to those
associated with the selection of suitable disc replacement
materials. At the present time, however, even some of the
salient features of the joint’s mechanical behavior are
poorly wunderstood . This 1s a consequence of the
difficulties 1in determining 1in-vivo mechanical properties
and constructing a realistic analytical model. (Belytschko
et.a2l.(3))

Research into the material properties of vertebral bone
has been performed by Galante et.al.(10), Rockoff

et.al.(20), and McElhaney (17). The use of the finite




element method to successfully model the vertebral body has

been demonstrated by Balasulramanian et.al.(2) and Hakim
etsals(ll).

Brown et.al.(6), Nachemson (18), Hirsh (14), and
Rolander (21) carried out experiments to determine the
static force deflection properties of the 1intervertebral
disc subjected to axial loading. Belytschko et.al.(4) and
Spilker (23) employed an axisymmetric finite element model
to study the time independant behavior of the intervertebral
disc.

Meanwhile, Kazarian (15) reported creep characteristics
for intervertebral joints subjected to constant axial loads,
and Kazarian et.al.(16) illustrated that the response could
be adequately modelled with a three-parameter viscoelastic
solid. Using a one-dimensional «c¢lassical approach, Burns
(7) derived the material constants for these three-parameter

solids.

i.2 Purpose

As a natural extension of the work which has been done
to date, this thesis was undertaken to include in the model
of the intervertebral joint, not only the geometric
irregularities and material inhomogeneity, but the
viscoelastic creep response previously noted. The ©purpose
in doing so was to determine the applicability of using the

one~dimensional parameters derived by Kazarian et.al.(16)

-




and Burns (7) 1in a three~dimensfonal model. Secondly, to
observe the influence of a creeping disc on the displacement

profiles and stress redistributions within the vertebral

body.

i3 Apnatomy (4)

The human vertebral column is a segmented structure of
24 mobile vertebrae separated by intervertebral discs. Each
vertebra consists of a body and a set of posterior elements.
The center of the vertebral body {s composed of soft
trabecular bone, and is encased circumferentially by a thin
shell of relatively hard cortical bone. The upper and lower
surfaces of the body, which are also thin plates of cortical
bone, constitute the bony end-plates.

The intervertebral disc 1s a rather complex entity
containing both solid and fluid material. Exterior to the
disc proper are two ligaments: the anterior 1longitudinal
ligament and the posterior longitudinal 1ligament. The
posterior ligament 1s attached dorsally, while the anterior

ligament is attached ventrally, to the disc.



The combination of two vertebral bodies with thelir

intermediate 1ligaments and disc 1is what constitutes the

intervertebral joint. During axial loading the disc appears
to be the primary load-carrying structure between vertebrae
(l4), (18),(21i), and thus any ligament restraint is removed
in order to focus entirely upon the disc interaction. (See

Fig (iI.1) and (1.2))
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Figure 1.1 Truncated Intervertebral Joint
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1.4 General Approach and Assumptions

Initially, analytical techniques were {investigated as
an approach to modelling the joint. This investigation
revealed the joint to be of such complexity that classical

methods could not be applied. The finite element method,

however, was found to be capable of handling the complexity,
and therefore w#s pursued.

An existing plane-stress, plane-strain finite element
program written by Hinnerichs (12) was modified toc account ]
for material viscoelasticity and inhomogeneitye. Since the
intervertebral joint was idealized as a body of revolution,
the program was further altered to accommodate axisymmetric
structures. These modifications were validated before the
program was applied to the problem at hand.

In addition to the assumption of axisymmetry, 1t was
also assumed that the {intervertebral joint was symmetric
with respect to the centerline of the disc. It was further
assumed that the observed creep was a quasi-static

phenomenon; in which case, the fnertia of the structure was

neglected. Kazarian (15) showed viscoelastic creep of the

joint to be dependant on the presence of the disc. That is,

the vertebral body alone did not exhibit creep when
subjected to a constant axial load. Therefore, 1t was
assumed that the trabecular and compacted bone of the
vertebral body were linear elastic materials, whereas the

disc was 1dealized as a homogeneous 1isotropic linear




viscoelastic substance. In other words, all of the

viscoelasticity of the joint was attributed to the disc.

Based on these assumptions, a T10-Tll spinal segment

(test L.D. 65 Kazarian et.al.(16)) was discretized and

studied. (See Fig 1.2 for their relative location in the

spine)




CHAPTER 2

LINEAR VISCOELASTIC THEORY

The classical theory of elasticity deals with the

mechanical properties of elastic solids, for which,
according to Booke’s law, stress 1{is always directly
proportional to strain in small deformations, but

independant of strain rate Saada{(22). The classical theory
of hydrodynamics deals with properties of viscous fluids,
for which, according to Newton’s law, stress 1is always
directly proportional to the rate of strain, but independant
of the strain itself.

The classical theories of elasticity and hydrodynamics
are idealizations, and many materials cannot be adequately
modelled by one or the other of them. For 1instance, a
material which 1s not quite s8o0lid does not maintain a
constant deformatioan under <constant stress, but slowly
deforms with time. When such a material 1is constrained at

constant deformation, the stress required to hold it




gradually diminishes or relaxes. A material which 1s not
quite liquid may, while flowing under constant stress, store
some of the energy input, instead of dissipating it. It may
recover all of its deformation when the stress 1s removed.
Materials which exhibit such behavior are identified as
viscoelastic and can be adequately modelled by combining the

classical theories of elasticity and hydrodynamics.

2.1 Classical Viscoelastic Theory

An extensive study of the viscoelastic theory has been
performed by a number of researchers. Principal results are
summarized 1in texts by Bland(5), Christensen(8), and
Flugge(9). A brief discussion of the theory is presented

here as a background for the reader.

2.1.1 One-Dimensional Theory (9)

The building blocks or discrete elements of linear
viscoelastic theory are the spring and the dashpot. Various
combinations of these elements serve to model the many
different types of viscoelastic materials. To understand
the combinations of these elements one must investigate
their f{ndividual characteristics.

Consider a helical spring which obeys Hooke’s law. 1Its

constitutive equation may be written as

10




c-Ee 2-1) ﬂ

where ¢ 1s the stress, g the strain, and E the Modulus of

elasticity. Similarly for the dashpot

c-=ylé, (2-2)

where n' is the dashpot <constant and *) denotes time

differentiation.
Perhaps the simplest combination of these elements 1is
the Maxwell fluid (Fig 2.1) 1in which the elements are placed

in series.

Figure (2.1)

To derive the constitutive equation for this model, the

equations of the two elements are written

a=F e (2-3)

and

.” . ?’
=Ne —_ E =% (2-4)

It 1is required that the total strain be the combination of

the two elemental strains,




Pl »
E=mE +E (2-5)

Fqs 2-3 and 2~5 are differentiated with respect to time and

.’ L7
substitutions are made for e and € . Thus the
constitutive equation 1s derived

. g [\
€= — + (2-6)
E 1
Written in standard form the equation is
O+ pa =49 € 2-7
P 1' (2-7)

where (1 this cas :-JL and .
e (in s e) ﬁ E n 1.=q_
Another combination of these elements 1s the Kelvin

solid (Fig. 2.2) in which the elements are placed parallel

to one another. e— € ——>
E
g a’ -
gt O P e Y
a”
.___[.
R

Figure (2.2)
The derivation of the constitutive equation for the Kelvin
8olid proceeds in a manner similar to the Maxwell fluid. In
this case 1t {8 required that the total stress be equal to

the combination of the two stresses

. 4 ”
=0 +a (2-8)

The constitutive equation is found by substituting in for dj

12




i e Y

o
and & -

oc=Fe + rlé (2-9)

which is written in standard form

Tege +q, € (2-10)

where (in this case) 1°=E and 1.=‘.

More complicated models are built by systematically
combining the discrete elements with Kelvin solids and/or
Maxwell fluids. The constitutive equation for any such

model has the form

pE+HPE Fpa e = 9,6 +9,€ +qEr 2-11)
Or

kso

k 3
s doe _ &  de
Z ﬁ‘ e - goi"j?i (2-12)

If the differential operators are defined

2.4 2 L
P é’?&at‘ ; Q_g‘lu:ﬁ"‘ (2-13)

then eq 2-12 can be written in the form

Pd‘ = Qe (2-14)

which resembles Hooke’s law.

13




The solution of Eq 2-14 for ¢ or ¢ as a function of

time is not a trivial problem. Perhaps the most universally
applied solution process is to subject the equation to the
Laplace transformation which results 1in an algebraic
relation between the transforms g and r Y of stress and

strain

m K — n . -
'GZO&AG' = éoih&e (2-15)

where .4, 1s the transform variable.

If the polynomial operators are defined

ke n
Q= goﬁf’ ‘ f&=§a 7"4} (2-16)

J

then Eq 2-15 becomes

Gr -9& (2-17)

Again, note the similarity to Hooke’s law.

2.1.2 Three-Dimensional Theory (9)

To this point in the presentation, consideration has
been given only to uniaxfial states of streas and strain and
an expression for the constitutive equation of a one-
dimensional linear viscoelastic material has been derived.
Next, a multiaxial state of stress 1s <considered and a

general constitutive equation for a three-dimensional

14




viscoelastic material is found. In order to do this, the
elastic constitutive equations must first be presented.

In elasticity, the state of stress and strain 1in a
material can be described with second-order cartesian

tensors @g;

5 and € (22). If the material 1is isotropic, then

only two material <constants are required to express the
constitutive equation. These constants are Young’s modulus
and Poisson’s ratio. The constitutive equation may be

expressed

féj = "E'T"[-A] EF] (2-18)

where [A] 1s dependant on Poisson’s ratio y .
Another way of expressing this relationship 1s by
separating the stress tensor 1into 1its spherical and

deviatoric components and writing

s = 3Ke (2-19)

é\ =2Geée (2-20)

where K and G are the bulk and shear moduli , s and e the
spherical stress and strain, 8 and & the deviatoric stress
and straln respectively. If an elastic material were
subjected to a hydrostatic state of stress then there would
be a volume change but no change in shape. 1In other words,

the spherical components (Eq 2-19) would bve affected, but

L5




the deviaroric components (Eq 2-20) would not.
Similarly, 1f a viscoelastic material is 1isotropic, a
hydrostatic stress must produce a volume change and no

distortion. The quantities s and e must therefore be

connected by a relation such as eq 2-14, and should be

written

(bR

(2-21)

M/ k of
ZF'é._é = > J

K=0 k t" ‘oﬁﬂk Jt

K

or

P's = Qe (2-22)

Similarly for the shear components

=’ 42 v, Js
‘d4s = - X1 (2-23)
Zop K Jt* Z.j—n dt*
or

/

A /A
PS = Qﬁ (2-24)

The four operators P‘, Ql, P‘: Q': which describe the
viscoelastic behavior of the material are entirely
independant of one another.

The elastic solid 1is a limiting case of the
viscoelastic material. It 18 seen that in this case the

four operators are simply mulitplicative constants

16 |




" ) p =1 =26
P=1, Q=3K , , Q=2 (2-25)

In an elastic solid wunder constant 1load, nothing
depends on time. In a viscoelastic material, all stresses,
strains, and displacements which are material dependant are
also time dependant. If the Laplace transformation 1s

applied to eqs 2-22 and 2-24 they become

27

14
Qg = 2 e (2-26)

and

’ a ’
-—

A
g =42e€e (2-27)

These are algebraic relations which become 1identical
with their elastic counterparts (Eqs 2-19 and 2-20) 1if the

following substitutions are made:

) ’
3K— -?%)-;; ) 26 — -—5—7— (2-28)
This leads to a most general correspondence principle:
(5) If the solution of an elastic problem is known, the
Laplace transformation of the solution to the <corresponding
vigcoelastic problem may be found by replacing the elastic
constants K and G by quotients of polynomial operators and
the actual loads by their Laplace transforms.

In most cases the solutions of elastic problems are not

i7




written 1in terms of X and G, but rather in terms of E and

Y - The elastic relations between E, 9 , K and G are (22)

Eﬁ: —:QJ$£i— i)= ;ﬁ!i::éﬂi_
3K+G ) 8K +26

(2-29)

1f the corresponding viscoelastic polynomial operators
for K and G are substituted into Eq 2-29, the following

expressions are obtained:

/111
. 32

= =, (2-30)
202°+1¢Q
and
’ ’ V4
@&l,——.?@
= T e (2-31)
202"'+2&
This correspondence principle is of sweeping

generality, but 1t does have its limitations. It requires
that one has closed form solutions to the elastic problem,
which, for nonhomogeneous structures of complicated
geometry, are unattainable.

The viscoelastic creep of the human 1intervertebral
joint {8 such a problem. Thus, the classical viscoelastic
correspondence principle must be abandoned as a solution
technique and another method must be tried, namely the

finite element method.

18




2.2 The Finite Element Method

Numerous authors have presented works which detail the
solution of Llinear and nonlinear elastic problems by the
finite element method. Among them are Bathe et.al.(3),
0den(19), and Zienkiewicz(25). Appendix A gives a brief
overview of its application to an elastic, axi-symmetric
structure under 1initial strain. The solution of the
viscoelastic problem by this technique 1s based on the
assumption that the material of the structure can be
adequately modelled by a finite number of Kelvin solids or
Maxwell fluids coupled with an elastic spring [Adey
ete.al.(l), White(24), Zienkiewicz et.al.(26)]. This
assumption 1is satisfied as long as the coefficient of the
zeroth-order derivative of eqns 2-12, 2-21, or 2-23 1is

nonzeroe.

2.2.1 One-Dimensional Problems (26)

For simplicity of presentation, it is assumed that the
structure 1in question 18 one~dimensional and can be modelled
as a three-parameter solid, ie. One Kelvin solid coupled
with an elastic spring. The 1instantaneous elastic
deformation is dependant only on the spring and therefore
can be separated from the creep deformation and solved by
the finite element method. The Kelvin solid (Fig 2.2) whose

constitutive relationship 1s given by eqn 2-9, 1s next

19




considered. This equation may be rewritten

éc - -%—d"" -?E‘—Eg (2~32)
which shows that the creep strain rate {s a function of
current stress level and total accumulated creep straine.
This expression 1is integrated by Euler’s time derivative
method [Hornbeck(13)] to yield

A€, = (o~ Ee.) at (2-33)

1
n

The quantity A€ represents the change in strain due to
creep at the end of a small time interval . This can be
considered as an 1initial strain 1imposed. The elastic
problem 1is solved again for a new stress system. Time is
incremented and the whole process 1is repeated 1in this
incremental fashion until a maximum time is reached. The
foregoing algorithm is more completely discussed in Appendix
A.

In general, for any viscoelastic material model, eqn
2-14 must be employed, which can be rewritten

€. = %‘ g (2-34)

Advantage 1s taken of the similarity of this equation with
Hooke’s law. That is, for uniaxial conditions, the quantity

‘/E_ of a simple elastic case is replaced by the operator

ﬁ/a for the viscoelastic case.

20
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2.2.2 Three-Dimensional Problems (26)

To generalize this technique to the multiaxial case an
appeal 1s made to the multiaxial elastic relationships 2-19
and 2-20 as well as the similar viscoelastic relationships
2-22 and 2-24%.

From these relations it can be seen that ’/SK. and

'/ZG'of the simple elastic case are replaced by the
operators P”/Q‘ and P’/O‘ for the viscoelastic case.

Again for simplicity of presentation, 1it 1is assumed
that the material {is elastic in volume change and a three
parameter solid in distortion. With these assumptions, the

operators become
i/3k = Pl/au = 1/3K (2-35)
and

1/26 = p/a = q+ ‘/(q, +9q D) (2-36)

where

D= A/Ji: (2-37)

As in the one-dimensional case it 18 necessary to
separate the elastic terms from the viscoelastic creep

terms. This is done simply by noting which terms are time




|
!
{
1

dependant and which are not. The volume change 1is assumed

to be all elastic so it may easily be written

1/3K = (f/jK)e + (O),_ (2-38)

where the subscripts "e" and "e¢" denote elastic and creep

respectively. The elastic part i{s given by

(1/3k). = 1/3K (2-39)

and the creep part 1is given by

A/3r)e = O (2-40)

From the distortion equation the parts are separated

similarly. The elastic part is

U/ZG)e = q (2-41)

and the creep part is

(1/ZG)¢ = 1/{10*?"0) (2-62)

Now, since {t 18 desired that these relations be
applied to the finite element method, the values y and
Elastic modulus must be solved for. In order to do this,

the elastic parts are grouped together
(1/3K)e = 1/3"( ) (1/26)6 = q‘ (2-43)
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Elastic modulus and ¢y are found using eqn 2-29.

(E)e = 5&% (2-464)

and

(V)e = ""3—&%’1 (2-45)

6Kq +1

the creep parts are grouped together

(/aK), = 0 ; (26), = 1/a;,+ 9,0) (2-46)

and solved for

V) = ’/Z ) (‘/E)a’%(q/i,*‘],,n) (2-47)

In order to wuse these quantities 1n the finite element
method eqn 2-18 must be returned to. For the elastic part
the values of Ye and Eeare substituted and the instantaneous
elastic deformation 1s solved using the finite element
method. For the creep part, the values for y, and Eeare

substituted to obtain

{ee} = 2/3 ( %L*‘;.D) EAJEO"} (2-48)

which 18 rewritten

e = LAlfel- V%4, e a-o

This equation is integrated by Euler’s method to yield
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ZAec = —%f— 2/_3[/‘]?5‘} -%:geC}J (2-50)

Again, as {in the uniaxial case, the iaetlbecomes an 1initial

strain 1imposed and the finite element method proceeds
gsimilarly. (If the reader 1is specifically interested in the
use of Eq 2<«50 within the finite element formulation,

Appendix A may be consulted.)
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CHAPTER 3

PROGRAM VALIDATION

As was mentioned in the introduction, numerous changes
were made to an existing finite element program. The first
step following these changes was to test the program against

some known exact viscoelastic solutions.

3.1 One-Dimensional Axial Rod

The £first test was conducted to demonstrate the
validity of the program’s application to a simple one-
dimensional problem. A homogeneous circular rod having
three-parameter viscoelasticity was subjected to a constant
axial load. Fig. (3.1) shows the rod and the finite element
mesh used to model 1{t, while a comparison of the
displacements with the exact solution is presented in Fig.

(3.2). The depicted solution was obtained by using an
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initial timestep of ten seconds which varied to a value of

47 seconds at the conclusion of the problem. The

approximate values were within 1% of the exact solution.
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3.2 7Thick-Walled Cylinder Subjected to Internal Pregsure

Whereas the first example tested the program for
accuracy in handling a very simple structure under an axial
load, the second example was designed to test the method on
a relatively complex problem under radial loading. The
thick~walled cylinder problem was chosen, because an exact
solution could be derived using the general correspondence
principle and 1t also provided the desired complexity. Fig.
(3.4) shows the geometry and boundary conditions of the

problem.

3.2.1 Exact Solution

In order to apply the general correspondence principle,
the elastic solution was needed. The plane-~strain
assumption was made which led to the following elastic

solution for the problem:

e .Zz_pb— (3-1)

ati-b"

—'—’ﬁ—?—k——[(!-zﬂr + --—-] (3-2)

It was noted that a_ and o, are independant of the
material constants, and therefore, 1in the viscoelastic

problem these stresses should be time 1invariaant. The
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displacement W, and the other stress €, » however, are

material dependant and therefore should be time dependant 1in

the viscoelastic problem. These quantities were found by

applying the correspondence principle to eqs 3-1 and 3-2

_ 2-‘; Qin_ 1,6)// -
d;" o:._‘ bt [ ZQ’Q”'{'QI@” (3-3)

2 I

[(32°& & _
'P-?%"z | 267+ "t v | ©

These relations were next applied to specific

materials. It was postulated that the volume change was

purely elastic, while the distortion behaved like a

three-parameter solid.

s 4 A— — W

Figure (3.3)

This assumption led to the following polynomial

operators:

Q’;fj .2”=3K, @; lrpa, -?/"lo*‘l'é/ (3-5)

which were substituted into egqs 3-3 and 3-4.

After some lengthy arithmetic and transform 1inversions

the following expressions were found:
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(3-6)

and

Gz = “12‘9215'3‘&%‘[ “‘5] + -3-&3‘-9* (3-7)

a*-b> (6K + 6KR +9,

where

= Ear 5 et YA o

Appendix B contains a full derivation of these equations.

3.2.2 Finite Element Solution

In order to apply the finite element method, a slice
was taken from the cylinder and discretized as shown in Fig
(3.4). The material constants were found using the wmethod
detailed 1in section 2.2.2 and the problem was solved. The
finite element solution was obtained wusing an 1initial
timestep of 0.0l seconds which increased to a value of 0.1
seconds at the conclusion of the problem. Figs (3.5)
through (3.9) present a comparison of the finite element
results with the exact solutions. In each 1instance the

variations from the exact were virtually nil, The

worst-case variation was less than 1%




3.3 Summary

Based on the good fits obtained for both of the test
problems, {t was coacluded that the finite element program

was indeed valid, and could be applied to the intervertebral

joint.
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CHAPTER 4

APPLICATION TO THE INTERVERTEBRAL JOINT

In the experiments performed by Kazarian et.al. (16),
several 1intervertebral joint specimens were studied. These
specimens were made by cutting the vertebral bodies parallel
to the 1lines of demarcation between the discs and the bony
end-plates at levels of maximum vertebral waistinge. The
specimens were then measured and placed 1in the test
apparatus. FEach was subjected to a dead weight load of 18.0
Kp (Kiloponds) for a period of time and the deflection of
the top edge was recorded.

For the purpose of this finite element study, specimen
number 65 (a TL0~Til segment) was used. So that comparisons
with the experimental data could be made, the same 18.0 Kp
load was applied to the finite element model as was applied

to the test specimen.
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4«1 Mesh Size and Material Constant Determination

In order to apply the finite element method to the
intervertebral joint, it had to be discretized in such a way
as to maximize the accuracy of the solution while minimizing
the computer resources expended. To accomplish this, it was
necessary to systematically reduce the mesh sizes until the
stresses within the Jjoint were observed to vary smoothly
from one region to another. Additionally, since a major
interest of this study was to observe the bone-disc
interface, the bony end~plate region was used as a focal
point during the mesh size reduction process. When the
stresses within the bony end-plate were observed to vary by
157 from those of the previous mesh size, the model was
considered to be refined enough to capture the trends of
stress redistribution with time. Figure 4.1 shows the
initial mesh used in the study.

Material properties for the trabecular and cortical
bone were taken to be: E= 750Kp/Sqem 9 = 0.25 and E=
161000Kp/Sqcm 9= 0.25, respectively (4). Assignment of the
viscoelastic material constants to the disc was done based
on the properties derived in Ref. (16) if.e. E= 167.2Kp/Sqcm,
10 = 64.6Kp/Sqcm, and g' = 1106000Kp-Sec/Sqcm. (See Fig 4.2
Ref. (16) fit to the experimental data) A problem 1in
assigning these constants was immediately encountered due to
the assumptions made in their derivation. Those assumptions

being that the joint was a homogeneous one-dimensional rod.
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Since the objective of this thesis was to represent the
joint as a nonhomogeneous, axisymmetric structure, it was
necessary to deviate from these constants.

The problem of inhomogeneity was approached first. 1f
one has two elastic rods loaded as shown in Fig. 4.3, the
first being made of a single material, while the other made

of two materials, it is readily shown that the displacement

u(ﬂ = % (4-1)

for the homogeneous rod and

< PL-2) Pa -
u (L) A E. + AL (4=2)

for the nonhomogeneous rod. The value of E as given in ref.
(16) was derived, 1in effect, by 1loading the specimen,
observing the 1instantaneous displacement LA(I), and then

applying eqn 4-1.

PL
Au(d)

(4-3)

E=

This approach was extended to the nonhomogeneous rod by

equating the right-hand sides of eqs 4-1 and 4-2.

P4 PUa) | Pu
44 E. - 14!i1 /‘E|

Here, all the values were known with the exception of E_,

(4=4)

which was found by simple algebra to be
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a EE,

E, = (4=5)
.l (EEz"lE)'Fa_E
Since the vertebral body was assumed to be linearly
elastic, the constants 10 and 1_| for the disc were simply
proportioned by a/l to obtain
10- 23.34 Kp/Sqcm

$|- 400,000 Kp=Sec/Sqcnm

Poisson’s ratio for the disc was taken to be 0.48 (4).

These material constants were assigned, and a computer
run was made. The 1instantaneous displacement of the top
edge of the joint at the line of rotational symmetry was
observed to be 0.003 cm, which varied significantly from the
experimental value of 0.014 cm. Furthermore, as time
proceeded, the displacement remained nearly constant. At
the end of 167 minutes simulation time, a value of only
0.004 cm was reached, while the experimental deflection was
0.023 cm at that time. These large variations from the
experimentally observed data were concluded to be a
consequence of having determined E, 1}, and 14 for the
disc based on the assumption that the joint was a
one-dimensional rod.

Before the mesh s8ize reduction <could proceed, the
values of E, Q" and 14 had to be found which would more
closely match the experimental results. It was noted that
the instantaneous displacement was dependant on the value of
E but independant of “o and ch . The first step,

therefore, was to vary the E value until the model matched
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the experimental displacement at t=0. This was done quite

readily wusing a trial and error method. The value of E
which best represented the 1instantaneous deflection, was
found to be 7.5 Kp/Sqecm. Fig 4.4 shows the displacement vs
time plot based on this E value.

The values of 1m and 1| were found by a similar
method. It was noted that the 14 value controlled the
slope of the displacement vs time curve, while the 90 value
had more 1influence on the displacement limft approached as
time increased. Fig 4.5 and 4.6 show some intermediate
results obtained by varying 10 and 1'. The values for 10
and 9, which best represented the data were found to be
10 =0.015 Rp/Sqcm and 3 =28,150 Kp-Sec/Sqcm.

With these material constants, the mesh size reduction
process was conrtinued. Figures 4.7 and 4.8 show some
intermediate mesh sizes. Whereas, at each reduction, the
instantaneous deflections varied little from those obtained
with the course mesh, those observed as time progressed
began to deviate from the experimental data. These
observations revealed that the value of E which was derived
from the course mesh model was good, but the values of 1,
and 1' needed more refinement. Therefore, as the mesh size
was further reduced, minor adjustments to the 10 and 1.
values were made. This process continued until the ¢;0 and
1. values showed 1less model dependance, and the stresses
within the joint varied smoothly from one region to another.

Furthermore, the stresses Ia the boay end-plate were
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observed to vary by less than 15% from those of the previous
mesh size. Figure 4.9 presents the final mesh size, while
Fig 4.10 shows the displacement vs time plot based on the

final values of 10-.01 Kp/Sqcm and 1' =27000 Kp-Sec/Sqecm.

4.2 Displacement Profiles

In order to visualize the displacements throughout the
joint as time 1increases, plots of the deformed shape were
made at convenient intervals. Figure 4.lla presents the
undeformed shape, while Figs 4.1lb,c,d show the shapes at
time=0.0, 80.0, and 160.0 minutes respectively. 1In each of
the figures, the deformations were magnified by a factor of
2 go that they could be more readily observed.

It was noted that because of the large disparity
between the elastic moduli of the vertebral body and the
disc, the greatest instantaneous deformation presented
itself 1in the disc. As time progressed, this condition
became even more pronounced in support of the assumption
that all viscoelastic effects were contributed to the disce.

Note that the disc appears to be "squeezed" outwardly
in the radial direction. As it moves outward in time, one
would expect that there would be an accompanying increase in
shear stress along the disc-bone interface. Additionally,
since the disc is constrained from moving radially at the
line of rotational symmetry, one would expect the radial

component of direct stress to show an increase in tension as
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the disc displaces outwardly. This outward movement also
appears to cause a "twisting" of the vertebral body. That

is, the wall of the cortical bone on the exterior of the

body 1s being displaced outwardly at the disc-bone
interface, while the top edge is displacing downward and
inward. One would expect this "twisting" to cause the
trabecular region to be placed in a state of compression
that would increase with time.

In the following section, the actual stress
redistributions are presented and appear for the most part
to follow the stresses one would expect from intuitive

arguments.

4.3 Stress Redistributions

The variation of shear stress through the joint was of

interest 1in determining the final mesh size. Vertical

profiles of shear were taken at two radii: r=0.625 cm and ;
r=l1.5 c¢m, and plotted ¢to observe the variations. These
profiles are presented for t=0.0 in Figures 4.12 and 4.13.
It was noted that the bony end-plate served as a boundary in
which the shear in the two relatively soft adjacent regions C
underwent a sign change. .

In addition to these vertical profiles, horizontal
profiles of all the stress components were taken at three

different joint levels: within the disc, the bony end-plate,

and the trabecular bone region just superior to the bony
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end-plate. Figures 4.14 through 4.25 present these profiles

for times varying from 0.0 to 160.0 minutes. From these

gstress profiles, a number of observations were made.

Figure 4.14 reveals that the radial component of stress
in the disc increased with time and at a radius of 2.2 cm,
the increase after 160.0 minutes was approximately 30Z.
This 1increase was also noted in the circumferential or hoop
stress component (Fig 4.16). The axial stress component
(Fig 4.15) was seen to increase by about 7% overall during
the 160.0 minute interval. The shear stress (Fig 4.17)
showed an interesting trend. For radial values from 0.0 to
about 1.75 cm, the shear 1increased with time, while for
greater radial values, it tended to decrease or relax. This
trend to relax was not predicted by intuitive arguments, but
18 concluded to be a result of the disc-bone interface
geometry. That 18, because the 1interface 18 a curved
surface rather than a flat one, 1intuition fafls ¢to
accurately predict the stress redistribution.

In the bony end~plate, where the greatest interest of
this study was centered, the first observation one makes is
that in each case, the stress components are of a much
larger magnitude than for any other joint region. This
points to the fact that the disc~bone interface 18 an area
which serves an important role in the overall integrity of
the human 1intervertebral joint. Furthermore, as time
progressed, the stresses underwent some significant changes,

which reveal the region to be very active during creep. The

46




radial component (Fig 4.18) increased by about 8% overall
during the simulation. In the shear stress component (Fig
4.21) there was an overall tendancy to increase in absolute
value. This trend was most pronounced at r=2.0 cm where the
increase was about 20%. The hoop stress (Fig 4.20)
increased for radial values from 0.0 to 1.5 ¢m and relaxed
for radial values greater than 1.5 cm. The stress reduction
was most pronounced at a radius of 2.2 cm where a 97 change
was observed. Figure 4.19, which depicts the axial stress
component, shows the bony end~plate to be 1in a state of
compression axially. This component showed a tendancy to
relax with time, with the reduction on the order of 92
overall.

In the trabecular bone region, the stresses (Figs
4.22-4.25) remained virtually constant. It should be noted
that the final data point on these plots near r=2.40 cm 1is
in the region of the vertebral body which is composed of
cortical bone. In that region (as was the case with the

bony end-plate) the stresses did vary with time.
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Figure 4.1 Initial Mesh Size

48




NIE (038) 3JWIL

02°'0 gl'0 A 80°
Wl IN3IW3IYTdSIa

¥2°0
-0 1%

00082 00 ‘0r2 00 '002 00091 00°021 00°08 00° 0¥ oo.Pu
L ) y - 1 1 - '}
.
eae(d Tequautgadxy g
114 (91) °Joy e

Blyo “dx3 = W0 g

6lyo “dx3 = 00

vido *dx3 = 03

vldg “dx3 = AN !

82'0

(16) Fit to the Experimental Data

Figure 4.2 Ref.

49




a. Homogeneous Axial Rod
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Figure 4.7 Intermediate Mesh Sizes
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Figure 4.8 Intermediate Mesh Sizes




Figure 4.9 Final Mesh Size
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Figure 4.11a Undeformed Shape t=0-
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Figure 4.11b Deformed Shape t=0+
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Figure 4.llc Deformed Shape t=80 min.
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Figure 4.11d Deformed Shape t=160 min.
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CHAPTER 5

CONCLUSIONS

Whereas attempts to model the viscoelastic creep of the
human intervertebral joint as a one~dimensional viscoelastic
structure have proven successful in portraying the
externally observed response, they have fallen short of
showing the internal response. Furthermore, when attempts
are made to apply the viscoelastic parameters derived from
such a model to a more complex two-~dimensional model, even
the external response 18 not accurately reproduced.

This observation led the author to deviate from the use
of the one~dimensionally derived parameters and seek to
derive constants which would more accurately reproduce the
externally observed response. In doing so, it was found
that the material constants based on the axi-symmetric model
of the Joint varied substantially from those derived from

the one-dimensional model. These significant variations led

to the conclusion that for purposes of stress analysis, the




one-dimensional parameters are inadequate. Stated
alternatively, the {intervertebral Jjoint is not accurately
modelled as a nonhomogeneous viscoelastic axial rod.

As was pointed out 1in the preceeding chapter, the
viscoelastic <creep of the human intervertebral disc causes
some significant stress redistributions throughout the
entire intervertebral Jjoint. These changes were most
pronounced in the disc-bone interface region , where the
greatest activity was noted. These redistributions led to
the conclusion that time 1s an 1{important variable which
should be 1included when modelling the human intervertebral

joint.
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APPENDIX A

In the following sections, the basic concepts and
equations used 1in the finite element analysare of elastic
materials 1s briefly reviewed. These equations provide
background for the viscoelastic finite element computer
program developed. The final section serves to show the
incremental nature of the viscoelastic problem and ties the
viscoelastic constitutive relation into the elastic solution
method.

The basic philosophy of the finite element method (25)
is that an approximate solution to a complicated problem can
be obtained by subdividing the region of 1interest 1into a
finite aumber of discrete elements and then choosing
appropriate relatively simple functions to represent the
solution within each element. These functions are simple
compared to the so-called "exact" solutions which account
for the entire region of 1interest. In this section the
equations associated with representing an axisymmetric body
as a finite number of elements are presented. The
displacements in each element are expressed as a simple
polynomial and the equations relating displacements to

applied loading are given.

DISPLACEMENT MODEL

The displacement function used 1in the displacement

81




formulation 1s generally selected as a polynomial. The

polynomial expression allows for simple differentiation and
integration. Also, as the element size becomes small, the
polynomial expression permits a simple approximation to the
exact solution. A polynomial of infinite order corresponds
to an exact solution. However, for practical purposes the
polynomial must be truncated to a finite number of terms.
Thus, the number of elements in a structure must be large
enough so that the displacement function for each element
closely approximates the exact displacements in that
particular region.

In any numerical method, the solution should converge
to the exact solution as the size of the elements become
small. For the displacement formulation, it has been shown
that wunder certain conditions the solution provides a lower
bound to the exact displacements (25). To assure this
convergence certain conditions must be satisfied. First,
the displacement function must be chosen 8o that rigid body
displacements do not cause straining of the element.
Second, the function must also be chosen so that a constant
state of strain is obtained as the element size approaches
zero. The simplest polynomial function which satisfies
these ¢two requirements and also maintains displacement
continuity between adjacent elements is the linear

displacement function.

DISPLACEMENT FUNCTION
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Figure A-1 shows a typical triangular element, m, with
nodes 1,3,k numbered in a counter clockwise direction. The
linear displacement function which defines the displacements
within the element is given by

U=k +94, Tty 2

(A-1)
v _‘.'d‘ +d_5r' +Qb£

where the constants o; are determined from the six nodal

displacements and nodal coordinates as

‘l 1 “l' QJ' a& u.:
oz { = 2_[.. bi b; be ug (A-2)
o3 “Le e ¢ Uy
and
Ay 1 ac a; ay Vo
Ast =>— 1 bd by bu A (A-3)
2Am
¢ Cc q Cx Ve

where AA-\ i{s the 1in-plane area of the element. The

coefficients a; » b‘- » and ¢; are given by

a = N W (as)

b, = 8 — Zx (A=5)

e, =T - VS (A=6)




where r and 2z are coordinates of the nodal points. The

other coefficients for the subscripts "j" and "k" are

obtained by cyclic permutation of the subscripts i, j, and

k.




Ai

Figure A-1 Typical Triangular Element
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G

ELEMENT STRAIN FOR AN AXI-SYMMETRIC GEOMETRY -

The total strains at any point within an element are

defined in terms of the displacement derivatives as

€a ‘)V/dz
_ Cr _ au/b, _
ge} ") el T w/r -7
Yre 3“/3: + ayar

From eqs A-l1 to A-6, the total strains are written in terms

of the nodal displacements and coordinates as

53 = [8] §u3

vhere {u} is the generalized nodal displacement and

| o ¢ O CJ' O Cy

= bi © by © be© A-9)
¢ bi C by Cu b

where

%, = % + b +Cc B

ELASTIC ANALYSIS

For 1linear elastic and 1isotropic materials, the
relationship between stresses §¢} s, 8trains ie} and any
initial strains ge;}is given by

LT

fel={xt=[o] { fef - gegg (A-10)
Te
Z

&

where [ D] is the elastic material property matrix. The




matrix [ D] for axisymmetric conditions is given by

I ‘94av %Zﬁx? O ]

E(.‘V) LV

. 4 - A-11

CD] G #Vv) (1-2v) ' / v i ( )
Sym S oY

METHOD of SOLUTION 20-v)

The equation which governs the elastic response of a
discretized structure can be derived from the principle of

virtual work (25) and is given by

(K] Eul = EP} + SQZ (A-12)

where [K] is the elastic stiffness matrix of the structure
Su&is the generalized displacement vector, 592 is the
external applied 1load vector, and 5@; is the force vector
due to the presence of initial strain.

The coefficients of the elastic stiffness matrix are

obtained from

M T
[K] = Z_ zr | [B] LPICB]l rdrde (413

m=|

where the integration 1s taken over the volume of each
element and the summation is over all elements {In the
structure. The nodal forces due to initial strains are

given by

{Qz = i gESJTLD] zep‘i d Vel (A=14)
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Since the integrals contain terms which are dependant

oa the radius r, an efficlent method of integration must be
chosen. The simplest approximation procedure is to evaluate

[B] for a centroidal point

=(r +vy +n) /3 (A-15)

N

=(z +2; ‘-’-'1)/3 (A-16)

In this case, {if [E] is defined to be [B] evaluated at the

centroidal point

K] = 22”4 EBJ ED][BJ (A=17)

ng = ,2',27' By EB] LD] fé.} r (A-18)

In the elastic problem, the unknowns are the
displacements iu%. The solution for these unknowns 1is found

by the inversion of Eqn A-12.

VISCOELASTIC PROBLEMS

As discussed in Chapter 3, the displacements, strains,




and stresses are seen to be time dependant in viscoelastlic

problems. It is also seen that the <constitutive relation
for a three-parameter solid <can be integrated in time to

give Eqn 2-50 which repeated here 1is
fac = 2[5 4056 - 9. 563 ] o
'

where [A] 1is given by
\ -V “Ve o
[A]= I Ve o) (A=20)
I (o)
53’" 1 -Ve
, 2
If SAe(_} i1s treated as an incremental d{initial strain

S€°}’ then it 1is readily seen that the viscoelastic
constitutive relation enters 1into the governing equation
(A-12) only 1in the residual force term zqs. Then, as time
is incremented by imposing a small At, the residual force
term 1s seen to vary with time. This means that Eqn A-12

must be solved at each time step for the values of
gul , fel=feed +§ed , §q~} Ae2l)

These values of iq-} and 5&1 are then substituted 1in to
Eqn A-~19 , time is incremented, and the process continues
until a maximum time is reached. Figure A-2 presents a flow

chart of the procedure.
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Figure A-2 Flow Chart of Solution Technique
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APPENDIX B .

The application of the general correspondence principle
to obtain the viscoelastic solution to the thick-walled

cylinder problem proceeds as follows:

a = ?b’— < 2.'26?—%" r 2 (B-1)
P S 3 2@-?”*20 r

Applying the assumption that the volume change 1s purely

elastic, while the distortion is a three-parameter solid,

leads to the following operators:
’” o ’ ‘2’
@: 4 ; _2:3'( ; Q:4+RA ; :z'+1'A (B=2)

Substituting into Eqn B-1 yields

‘—__z 140 5[*“) a"—
” u"-a,’__bt (7.41'/;) gk(,,ng),(?‘,i'a)r‘ + - (B-3)

H,.A'P.:%La( 1+pa) , _a(i+pe) (B-4) | ‘

Kebkposdtgt Y (gerhi®)
- _ D y 3 +37p.v‘4/ + a 4.'34"4«
uf'-a -bl bK*G‘f,b"‘ o*‘l‘o‘ ?'r + (’.T‘A/ (B-3)
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a -

- N 2
ar-_- _P_b_—LBr +3plr‘°/ + q +£4 A’] (B-6)

62*1,) +T(an 4—1.)& 9" + 4, ra

- _ =1 zﬂ 3;- ép ra
" K+1,)+(6Kpf1)4 (bm?,p(euf *4)e  (3-7)

z 2
a
$ — -+ __P’_&-L
eor +1,"A¢ ?’y +q'r.o«
At this point, the method of 1load application must be
considered. If the 1load 1is applied instantaneously, the

value of P becomes p=p/a . Substituting and rearranging

leads to

— - 3r 1
u’-iﬁ:ﬁé"ﬂ ’1'[ “’] [;6‘1;:'}:*‘)](5 -8)
a 1 a
Tqr L(%M)] v '2,7[ ("/;.*‘J

The equation 1n this form is coaveniently inverted to the

time domain by the following expressions:

1 ot
> c (B~9)
X +4
and
4 1 ~-at
4744'&) (1 - (B-10)
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“'z—’e—'gekq,[h d] +eﬁ ™

4._3':[1-5@7 + -f'-“—': C'(“Z

(B-11)

r gq,r
© !
where é‘(*’go . - I3
T /3.

To obtain the value of d‘z, consider the transformed

(€48

-—'F-—' 262"+ 2 Q" (B=12)

equation

Substituting in the polynomial operators from Eqn B~2 yields

(B-13)

(»J.usz q,-—fi yy
0y = a —b‘ 6K (1 +pa) +7, +«;.

o = __p_h (3’4'3)4‘(3EP. "‘)v)“"] (B-14)
(Gk +92 + (Kpi+ 3~

Again assuming Iinstantaneous loading leads to

- 1 3 1
2pb 3K 40 S .521 ﬁ, B
G #g&lyﬂ;.{;ﬂ'—iw)] CKy, +1.E-%+J (B>

Using the same inversion expressions gives

v - —ott
o = 28 et &%), ooy, o7 i)
a*-b" (GK+9e éKy. 44,.

where, again A GK"’ .

T GKp 9
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